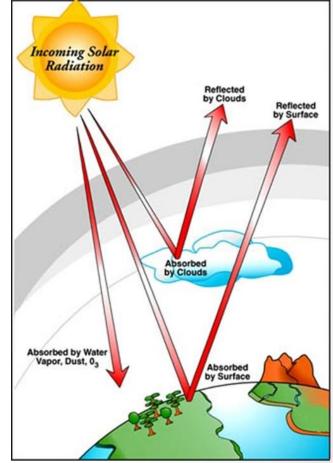
College of Engineering, Forestry, and Natural Sciences Dept. of Mechanical Engineering

Solar Irradiance Measuring Device

Joey Cavaretta Allison Venezia John Hills Tim Tormey Peter Journell Nick Jurik

Overview

- Introduction
- Problem Statement
- Tripod Acquisition
- Sensor Mount
- Data Transfer
- Data Analysis
- Timeline
- Resources


Problem Restatement

Problems with current site

- Covers to much surface area
- Data collection errors
- High cost

Goal:

Design a relatively small, portable solar irradiance measuring system that can accurately quantify variance in solar irradiance over a larger area.

Tripod Options

<u>Acculine Pro Tripod</u>

- Lightweight, durable
- Feet have sharp metal points

Manfrotto Aluminum Tripod

Leg angles: 25°, 46°, 66°, 88°

Vanguard MT-23 Metal Tripod

- Supports 8.8 lb
- Spiked feet
- Slik Sprint Pro Tripod
 - 18.5 inches when folded

	Acculine Pro	Manfrotto	Vanguard MT-23	Slik Sprint Pro
Cost \$	99.95	112.73	44.95	89.95

Auto Leveling Mount

- Auto levels as soon as tripod is placed
- Stays level with changing ground conditions

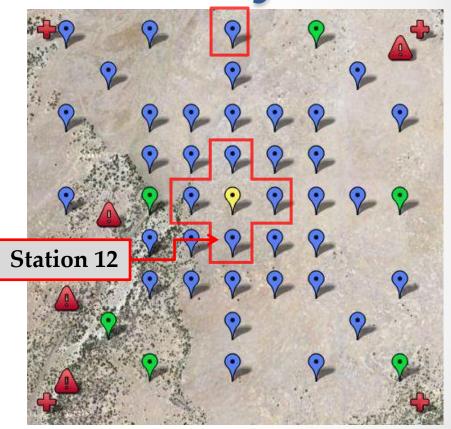
Li-Cor 2003S Fixture

- Off-the-shelf product
- Don't know price of fixture

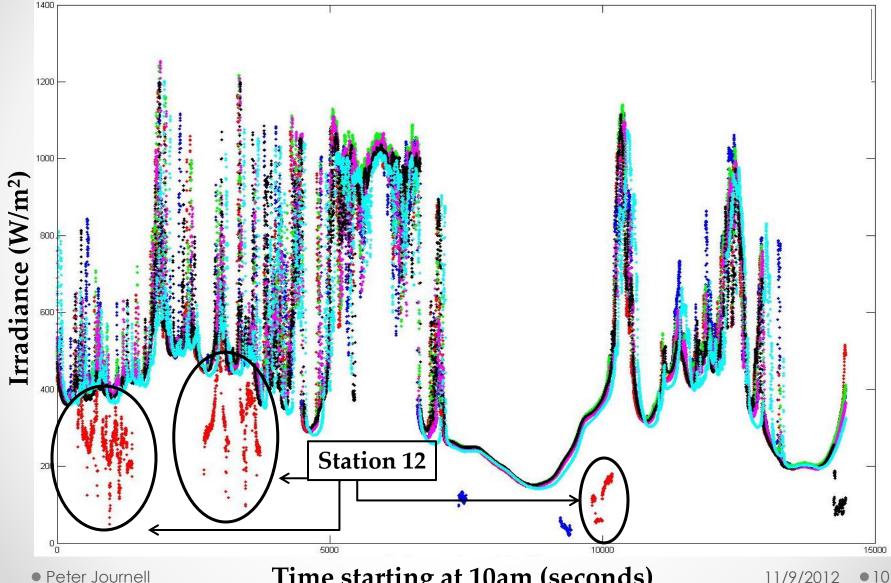
Model LI2003S (c) 2001 Campbell Scientific (Canada) Corp.

Data Transfer

- Wireless:
 - Electrical engineering component difficult
 - High cost
 - Low reliability
- <u>Wired:</u>
 - Simple setup
 - Sensors come with 50 foot cable
 - Negligible voltage drop

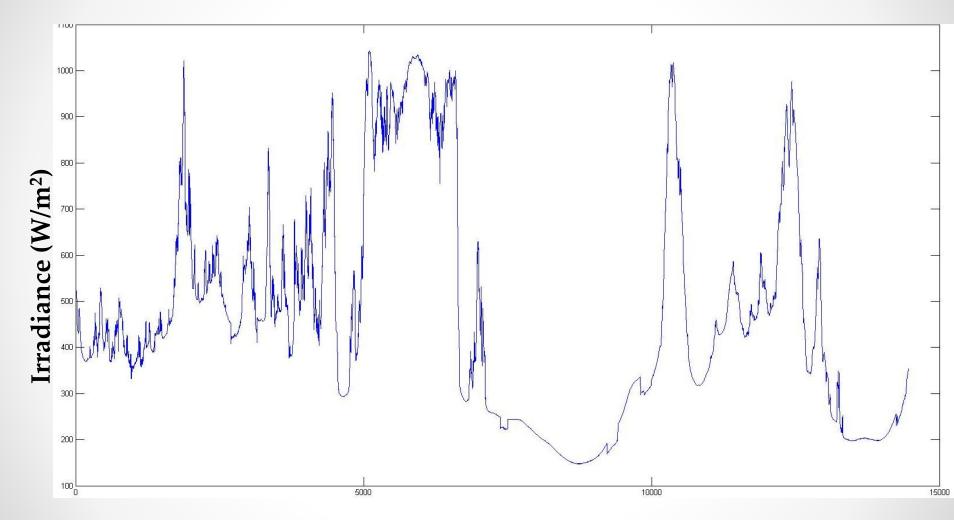

Data Transfer

- Wires will be housed in flexible conduit
- Protects wires from
 - Cows
 - Rodents (ie. Field mice)
 - Ultra violet rays
 - o Water



Current Data Analysis

- Statistical analysis to guide future data processing
- Compare this smaller grid to the larger site


Irradiance Vs. Time

Time starting at 10am (seconds)

11/9/2012 •10

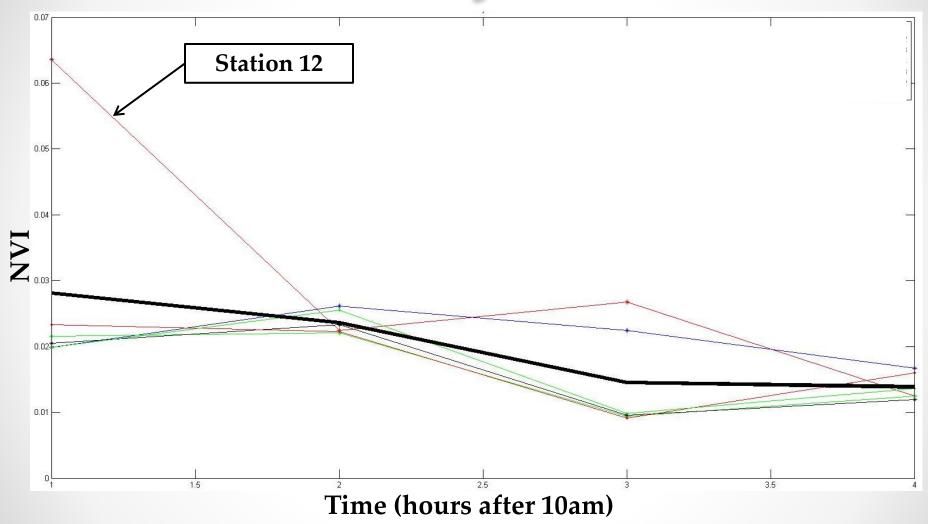
Average Irradiance Vs. Time

Time starting at 10am (seconds)

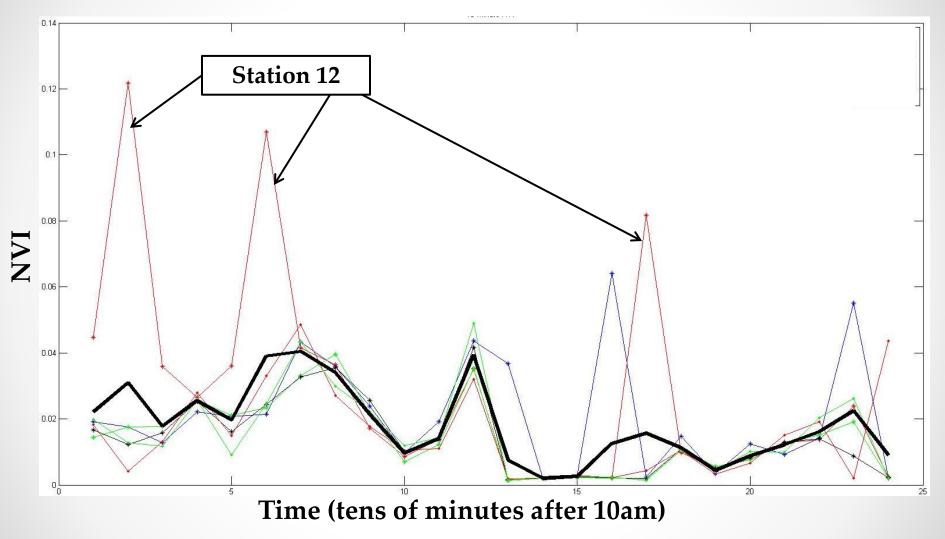
11/9/2012

Natural Variance of Irradiance

Developed by David Willy

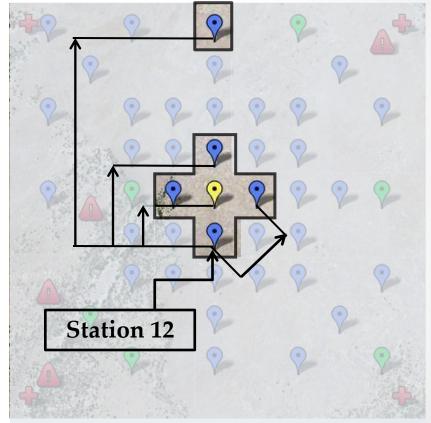

$$NVI = \frac{\sigma_{\Delta G}}{\overline{G}}$$

 Provides a non dimensional number that compares the change of irradiance over time to the total average irradiance


Daily NVI

	Station	NVI
Notes	8	0.02369
Most stations exhibit	12	0.03642
 similar NVI values Station 12 still an outlier 	13	0.02054
	14	0.02093
· Sidilon 12 sill di Oolliei	18	0.02174
	42	0.02213
	Average	0.02424

Hourly NVI



10 Minute NVI

Where to go from Here?

- Determine irradiance as a function of time and separation distance
- Try to model cloud movement
- Investigate data from station 12

Timeline

GANTT Project	Sep - 12 October 2012				N	November 2012				
	39	40	41	42	43	44	45	46	47	48
Needs Identification		78. 89	-	18	6	101		15	93	jW.
Initial Website Setup			{Wes Hi	lls}						
Research Aspect				-						
Concept Generation & Selection			+	12.1		1				<u>1</u>
Engineering Analysis						<u>;</u>		ŋ		
Write MATLAB code to analyze data	2					{Nick	: Jurik}			
Off-the-Shelf vs. Fabrication										
Conference with NextEra	{Nick Jurik},Joe y Cavaretta,Wes Hills									
Final Design and Proposal							- W			
Report 1			٠							
Presentation 1										
Presentation 2										
Report 2						•				
Presentation 3										
Report 3	2	• • • • • • • • • • • • • • • • • • •								
Presentaion 4										•
Report 4	8									+

References

- "Prevailing Wind Direction." *Http://www.wrcc.dri.edu/.* N.p., n.d. Web. 03 Nov. 2012.
 http://www.wrcc.dri.edu/htmlfiles/westwinddir.html
- Flood, Ronald K., Dr. Tom Acker, and David Willy. Prescott Airport Solar Facility Solar Variability Study. Tech. N.p.: n.p., n.d. Print.

Questions?